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GENERATION OF ELEMENTS 
WITH SMALL MODULAR SQUARES AND PROVABLY 

FAST INTEGER FACTORING ALGORITHMS 

BRIGITTE VALLtE 

ABSTRACT. Finding small modular squares, when the modulus is a large com- 
posite number of unknown factorization, is almost certainly a computationally 
hard problem. This problem arises in a natural way when factoring the modulus 
by the use of congruences of squares. We study here, with the help of lattices, 
the set of elements whose squares mod n are small enough, less than 0(n213) . 
We obtain a precise description of the gaps between such elements, and we de- 
velop two polynomial-time algorithms that find elements with small modular 
squares. The first is a randomized algorithm that generates such elements in 
a near uniform way. We use it to derive a class of integer factorization algo- 
rithms, the fastest of which provides the best rigorously established probabilistic 
complexity bound for integer factorization algorithms. The second algorithm 
is deterministic and often finds, amongst the neighbors of a given point, the 
nearest one that has a small modular square. 

INTRODUCTION 

At present, two of the most efficient factorization algorithms are the polyno- 
mial sieve algorithm and the continued fraction algorithm, which are based on 
congruences of squares. In order to factor n by using such algorithms, one has 
to find x, y such that x2 y2 mod n and x - ?y mod n . The problem reduces 
to obtaining many smooth quadratic residues modulo n, a smooth number being 
a number which is composed solely of small prime factors. It is intuitively clear 
that smaller numbers are more likely to be smooth. One can precisely quantify 
this correlation with the help of the function L(n) = exp /log n log log n, and 
this function plays a central role in the complexity of integer factorization. 
- There are two different approaches: one is heuristic and leads to fast practical 

algorithms; the other is rigorous (appealing to no unproven assumption) but 
leads to less efficient algorithms. 

(A) In the most practical factorization algorithms due to Morrison and Brill- 
hart [4] or Pomerance [5, 7], one uses quadratic residues modulo n, of absolute 
value less than nl/2+o(l), that are produced in a deterministic way. Since these 
algorithms use small quadratic residues, they are efficient in practice. However, 
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the analysis of their complexity cannot be done, unless one appeals to ad hoc 
heuristic hypotheses asserting that the numbers used are "pseudorandom" with 
respect to smoothness. One obtains in this way [5] a class of algorithms with 
nonrigorously proved complexity bounds in the range L(n) to L(n) . 

(B) On the other hand, Dixon [3] uses purely random quadratic residues, so 
that one can prove the complexity of the corresponding class of probabilistic 
algorithms. However, since the quadratic residues used are only bounded by 
n, the algorithms are not as efficient in practice and their run times range from 
L(n)2 to L(n) [6]. 

Here, we show that some of the good aspects of both worlds can be combined: 
We consider the set B of the elements whose squares modulo n are less than 
4n213, and, by a detailed study of their distribution, we are able to produce a 
polynomial-time algorithm that generates the elements of this set in an almost 
uniform way. We apply this result to integer factorization and obtain a class 
of probabilistic algorithms whose time-complexity bounds are proved to be in 
the range L(n)V'/ to L(n)v /. More precisely, the main result of this paper 
is a description of a rigorous, random factoring algorithm of time complexity 
L(n)v/4/3+?(') on input of the integer n. This last bound, with exponent near 
N/4T3 = 1.1547, is the best rigorous complexity bound established so far for 
integer factoring algorithms.1 

In order to study the set B, we construct a particular covering of the integers 
modn for which the distribution of B is globally uniform: This covering is 
made with Farey intervals [1] which each contain almost exactly the number of 
elements of B that one should expect if the distribution of B were actually 
uniform. Locally, in each of these subsets, we build on methods we developed 
earlier for "guessing" Ith roots modn [8]. We transfer our problem to lat- 
tices and use very natural properties in the geometry of numbers to solve an 
integer programming problem: Describe, in an algorithmic way, points of a two- 
dimensional lattice which lie between two parabolas. From there, we obtain a 
precise description of this set B, and we derive two polynomial-time algorithms 
which allow one to generate locally the elements of B. The first realizes a ran- 
dom drawing from B in an almost uniform way, while the second determines 
the two neighbors of an element of B. 

Our paper is organized as follows: In ?1, we describe a general framework 
for integer factorization algorithms, which covers most classical methods. We 
obtain general conditions (Theorem 2) under which a rigorous time-complexity 
bound can be derived. Amongst these conditions, a natural one emerges, namely 
the ability to describe precisely the set B(a) of the numbers whose square 
mod n is less than na, with 0 < a < 1. First, we give a sharper estimate of 
the cardinality of this set when a > 1/2 (Theorem 3). 

1Note added May 1, 1990. Since this work was completed, H. W. Lenstra, Jr. and C. Pomerance 
have announced a rigorous complexity bound of L(n) 1+o(1) for integer factorization. 
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In the sequel of the paper, we show how to study this set when a is near 2/3. 
We consider the set B of numbers whose squares mod n are less than 4n213, 
and, by a local use of lattices, we obtain a description of this set that proves 
the facts that we observed in our numerical experiments (Theorems 4 and 7): 
We explain the occurrence of a regular pattern in the gaps between successive 
elements of B (Theorem 7) and we prove that there is a global balance in the 
variations of these gaps (Theorem 4). 

This description is efficient enough to give rise to two polynomial-time algo- 
rithms: With Theorem 5, we show how to draw random elements of B both in 
polynomial time and in an almost uniform way. We thus obtain a condition, 
namely the Uniformity Condition, from which we deduce Theorem 6, which 
provides our complexity bound for integer factoring. In Theorem 8, we adopt a 
deterministic point of view. We determine in polynomial time the two elements 
of B which surround a given point. 

We finish by comparing our results to the previously known ones, from the 
two points of view of theoretical number theory and computational number 
theory. 

A preliminary presentation of some of these results appears in [9]. 

1. THE a-DIXON METHOD 

Complexity bounds for the class of factorization algorithms that we describe 
here can be expressed mainly in terms of the function 

L(n) = exp /log n log log n . 

(Henceforth, logx = loge x.) La is a shorthand notation for the class of 
functions L(n)'+o(l), and we call exponent of f the number a defined by the 
relation f E Lt. Let Z(n) denote the ring of the integers modulo n that we 
identify with the integers in the interval of length n centered at 0; we denote 
by Q the squaring operation in Z(n): 

Q(x) = x modulo n. 
For two reals a and fl, with 0 < a < 1, we shall deal with the two related 
sets: 

B(a) = {x E Z(n) I IQ(x)l ' nI}, 

F(a, fi) = {x E B(a) I IQ(x)l is composed solely of primes p < L(n)f}. 
1.1. The a-Dixon algorithm. It is natural to consider a generalization of Dix- 
on's factorization method [3] which operates with elements of B(a) in order 
to find elements of F(a, ,B), and we call it Dixon's a-method, or D[a] for 
short. It reduces to the standard Dixon's method when taking a = 1, and we 
recover the general framework of both the continued fractions algorithm and 
the quadratic sieve method when taking a near 1/2. The algorithm D[a] 
involves four main steps and two parameters f, and y that will be adjusted 
later. Its description is as follows. 

(1) Look for all prime factors of n less than L(n), and remove them. 
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(2) Consider the set P of the prime numbers less than L(n)8; perform 
L(n)' draws from B(a) in order to obtain L(n)f elements xj of 
F(a, /8) (i.e., completely factored in P). 

For all j < L(n) , one has: Q(x;) = fI Pi. 

{ilPiEP} 

(3) Consider the matrix M formed with the coefficients mij mod2. By 
means of Gaussian elimination on M in the field GF(2), look for a 
subset J such that H,EJ Q(x1) is a square, denoted by y2 . Then, 

2 ~~2. Y2 
X= jEJ xj is congruent to y modulo n. 

2 Y2 
(4) If the congruence X y [nl is nontrivial, it provides a nontrivial 

factorization of n. 
The main problem that we encounter in analyzing the complexity of such an 
algorithm is the determination of y from the values of a and PB. This can be 
done if the following two conditions are fulfilled: 

Counting Condition. We can determine the probability that an element of 
B(a) belongs to the set F(a, ,B). 

Uniformity Condition. We can draw from the set B(a) in polynomial time 
and in an almost uniform way. 

Under these conditions, we know how to choose y as a function of a and 
,B. Next, we determine the optimal value of ft as a function of a, and we 
obtain the complexity bound for the algorithm D[a]. 

1.2. Formalizing the Uniformity Condition. Let us first make the Uniformity 
Condition precise: 

Definition 1. Let / = (11, 12) be a pair of positive constants. A drawing algo- 
rithm C, defined over a finite set U with the uniform probability P, and with 
values in a subset X of Z(n), is said to be i-uniform if for all x E X, one 
has 

14 <?P(uEUIC(U)=x)< <12. lxi x 
We consider now a family of such drawing algorithms obtained when the 

index n varies. Then U, P, X, etc. may depend on the integer n. We will 
say that this family is quasi-uniform if one can find a pair l independent of n 
for which all the drawing algorithms are i-uniform. For short, any element of 
this family will be said to be quasi-uniform. Generally speaking, 

Quasi = Proportional up to absolute strictly positive multi- 
plicative constants. 

Now, we can precisely state the Uniformity Condition: There exists a polyno- 
mial-time algorithm which draws elements from B(a) in a quasi-uniform way. 
1.3. The complexity bound for the D[a] algorithm. The first result describes a 
sufficient condition under which the Counting Condition is fulfilled. 
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Theorem 1. If n is solely composed of prime factors greater than L(n), the 
probability that an element x drawn by a quasi-uniform algorithm from B(a) 
belongs to F(a, /1) is in L /(2fl). 

Note that the first step of the D[a] algorithm fulfills this hypothesis, and thus 
the Counting Condition. So it remains to show how the Uniformity Condition 
leads to time-complexity bounds for the D[a] algorithm. 

Theorem 2. Assume the following condition: there exists a polynomial-time algo- 
rithm which draws elements from B(ac) in a quasi-uniform way. Then the proba- 
bilistic factoring algorithm, obtained by the a-Dixon method, with the optimum 
choice of auxiliary parameters /1 = / and y = Vfa, has time-complexity 
exponent equal to vrSa. 
Proof of Theorem 1. We use directly two results of Pomerance [5]: 

The cardinality of B(a) is equal to 2naL(n)o(l). 
The cardinality of F(a, ,6) is equal to 2naL(n[a1(2fl)+o(l). 

Thus, we deduce: The exponent of the probability that an element of B(a) 
belongs to F(a, /1) is equal to -a/(2f,). This exponent will not change if we 
replace a uniform drawing from B(a) by a quasi-uniform one. Thus, if we can 
choose x in B(a) in a quasi-uniform way, the probability that Q(x) could be 
factored in the base P is equal to L(n)-'1(2fl)+o(1) . z 

Proof of Theorem 2. If we want to obtain Lfl different quantities Q(x) that 
are totally factored in P, we expect to perform L' draws from B(a) with the 
following relation between the parameters: 

y - 2 = fl 

We adapt now to D[a] the improvements that Pomerance [6] gave to Dixon's 
standard method. He uses, in Step 2, the Elliptic Curves Factoring Method 
in order to find small factors of the Q(x), and, in Step 3, the Wiedemann 
elimination method which works well on a sparse matrix with entries in a finite 
field. 

Proceeding in this way, one can prove, as in [6], that the cost of each iteration 
of Step 2 is equal to L(n)O(1), so that the exponent of the total cost of this step 
is equal to 

y = f + which is minimal for fl=Vd 

The best exponent of Step 2 is thus v'a. 
In Step 3, one can successfully apply the Wiedemann method because the 

matrix M contains less than O((log n/log log n) 1/2) nonzero elements in each 
row. This number has an exponent equal to 0, and thus the exponent of the 
elimination cost is equal to 211 = a. E 

It remains now to obtain the Uniformity Condition under our particular 
choice of a. We will choose a near 2/3, and we will complete this task in the 
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next sections, after a detailed study of the subset B associated with this choice 
of a. 

1.4. A sharper estimate of the cardinality of B(a). We begin this study with 
providing a sharper estimate of the cardinality of the subset B(a) , under specific 
hypotheses about the parameter a. 

Theorem 3. If n is solely composed of prime factors greater than L(n), and if 
a is greater than ao = 1/2 + (loglog n/ log n)112, one has 

I jB(a)j - 2naI < naL(n)l+o(l). 

For the proof of Theorem 3, we start with an odd integer n, with its prime 
factor decomposition 

h 
n =fpe', 

i=1 

where the pi's are distinct primes in increasing order, and the exponents e1 
are at least 1 . Throughout the proof, small letters are for cardinalities of the 
sets denoted by the corresponding capital letters. Given any subset T of Z(n) 
formed with t consecutive integers, we let 

T= x E Tj(x, n) = 1 
S = {x E Z(n)IQ(x) E T}, S = {x E Z(n)l(x, n) = I and Q(x) E T}. 

We must evaluate the cardinality of the subset S in the particular case when the 
corresponding set T is the subset [-n', +nl]nZ(n). The proof of Theorem 3 
consists in three lemmas; in the first two lemmas, we consider a general subset 
T and we come back to our particular hypotheses in Lemma 3. We seek an 
upper bound for the expression Is - tl. Lemma 1 links s and the cardinality 
u of the subset U of T defined by 

U = {x E T*Ix is a square modulo n}. 

Lemma 1. The cardinalities of S, S*, T, T* are related by 

(1) 5 * = 2hU, S<s<* < +2 h(t - t*), t - t* < h*tpl + 1) 

The proof of Lemma I is straightforward and is omitted. From the relations 
of Lemma 1 one easily deduces 

(2) 0 < s - 2h u < 2h_h(t/pl + 1). 

In order to link t and u, Lemma 2 uses the Jacobi symbol and a particular case 
of the P6lya-Vinogradov inequality using this symbol; this provides an upper 
bound for It - 2 uh. 

Lemma 2. We have 

(3) It - 2hul < 2 [[1lgn + h(t/pl + 1)1. 
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Proof. The Jacobi symbol (n) relative to an odd integer n is defined from 
Legendre symbols: 

(n) h(PiX) 

The Legendre symbol relative to an odd prime p is defined by the three prop- 
erties: 

(i) (x) = ?1 for all x coprime with p. 
(ii) (x) = +1 if and only if x is coprime with p and is square modulo p. 

(iii) (p) = 0 if x is a multiple of p. 
Moreover, an element x of T is a square modulo n if and only if it is a square 
modulo each pi. We deduce the following expression for u: 

2 XET* i=l Pi 

We work with the squarefree divisors of n. For a nonempty subset I of 
H = {1, 2, ..., h}, we let qI = liEPi Equality (4) can be written 

(5) ~~~~~~t* 1 (5) u- 2hE z&) 

0#ICH XET* ?I 

The Polya-Vinogradov inequality [2] will give an upper bound for this ex- 
pression; it asserts that: For any odd squarefree integer m and for any interval 
T of Z, one has 

| ( 
< 

| _ m /log m . 
xETM 

We use now all the P6lya-Vinogradov inequalities associated with the q1's. Con- 
sidering the subsets of T, 

TI = {x E TJ(x, qI) =1} 

we obtain 

? <-/Iqjlog q,. 

Using inequality (1) and the fact that TI contains T*, we deduce 

E~~~ ( 
Iq ) log q, + h t 

+ 1). 
XET* 

We use these inequalities in (5), and obtain 

l2hu-t*? <2 hilogn+(2 -l)h (-+ 1). 

Using relation (1), we get the upper bound of Lemma 2. o 
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The previous two lemmas provide an upper bound for the quantity Is - tl; 
from inequalities (2) and (3), we obtain 

(6) Is -tl <2hvAn-log n +2h+lh t +1) 

Now, under the specific hypotheses of Theorem 3, we can evaluate this upper 
bound and complete the proof of the theorem. 

Lemma 3. If n is solely composed of prime factors greater than L(n), and if 
one sets t = 2na with a greater than ao = 1/2 + (loglog n/ log n)1/2, one has 

Is - 2nal < naL(n[)l+O(l). 

Proof. Since n has all its prime divisors larger than L(n), one has 

h < (logn/loglogn)1/2 and also 2h < L(n)o(l) 

Furthermore, our hypotheses allow us to bound from above each term on the 
right of (6) by 

naL(n)- 1+o(1) 

which completes the proof of Lemma 3. 0 

We can come back now to the subset B(a), which is exactly the subset S 
associated with T = [na, +n'] n Z(n) . Thus, Lemma 3 finally completes the 
proof of Theorem 3. 

2. A STUDY OF THE SUBSET B USING FAREY COVERING 

AND GEOMETRY OF NUMBERS 

The purpose of this section is to introduce basic notions and tools that we 
use for studying the set B of elements x of Z(n) whose squares x2 mod n 
are in absolute value at most 4n213. Starting with two experimental facts, we 
are led to a covering of Z (n) related to Farey sequences, as well as to a special 
class of integer lattices linked to B. The results relative to random generation 
of elements of B that are of use for the complexity of integer factorization 
are stated in this section (Theorems 4, 5, 6) and proved in ?3, using the main 
tools of this section. But here, the structure of B appears to be curious enough 
to deserve detailed analysis. In particular, we wish to precisely explain all the 
experimental facts that we observe, and use them to generate locally the elements 
of B in a deterministic way. This will be done in Theorems 7 and 8 of ?4. 

In the sequel, we adopt the shorthand notation: 

B B (2 + log4 h 4n213 and k=h= 
. 

n 

We assume here that our problem is not trivial, i.e., we have 2h < n or equiv- 
alently n > 29. 
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2.1. Experimental observations. In order to study the subset B, we need to de- 
scribe the distribution of gaps between successive elements of B. We observed 
in numerical experiments two important facts: 

Pattern Occurrence. The gaps between successive elements of B may have 
large variations near the rationals pn/(2q) of small denominator q, but their 
distribution appears to follow a definite pattern inside a sufficiently small interval 
around pn/(2q). 

If q is very small, there appear sequences of gaps all equal to q, sepa- 
rated by much larger gaps. 
If q is moderately small, an element of B may appear in the midst of 
a gap of length q (which then splits into two gaps of sum q ). At the 
same time, much larger gaps disappear. 

This pattern seems to disappear when going away from pn/(2q). 
Balance Phenomenon. There is a balance between these gaps, so that the total 

number of B's elements inside a sufficiently large interval around pn/(2q) is 
almost the same as if the distribution of B in the whole Z(n) were actually 
uniform. 

It appears that the length of a suitable interval to express these phenomena is 
inversely proportional to q . 

Let us give a numerical example of these facts: For n = 46961, we observe 
the situation near three rationals: n/4, n/12, and n/1 8. We use the notation 
xY for a y-fold repetition of a gap sequence x. 

Near n/18, the sequence of gaps starting at 2601 is: 

(81)1 (71)(81) (71)(81) (71)(81)(71)(81)(71)(81) etc. 

Near n/12, we find the following sequence of gaps starting at 3895: 

6 (5 1) 56 (5 1) 56 (5 1) 5 etc. 

Note that the point n/12 lies in the middle of the first sequence of gaps equal 
to 6, which is also the longest one in this neighborhood. 

Near n/4, the sequence of gaps starting at 11103 is: 

2 13 2 13 24 13 24 13 25 132526 1727 23 2825 2127 2 1235 2 1659 2957 etc. 

Note that the point n/4 lies close to the middle of the sequence of gaps 290 
which is also the longest one in the neighborhood. 

It remains to prove these facts, which we now set out to do. 

2.2. Farey covering. In order to prove the above observations, we construct 
a particular covering of Z(n), based on Farey sequences (see, e.g., [1]), that 
we call the Farey covering of order k. By definition, this covering is made of 
intervals I(p, q) with center pn/(2q) and radius n/(2kq) = h/(2q), where 

IpI < q < k and (p, q) = 1. 
We are going to prove that these intervals are convenient for our purpose: 

They are sufficiently large to realize a balance between the variations of the gaps 
in B, and sufficiently small to preserve the pattern of these gaps. 
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0 n12 

FIGURE 1 

Farey intervals for k = 8 

We compare intervals I(p, q) with closely related intervals J(p, q). Given 
three consecutive Farey fractions with denominators less than k: 

-, and 2I, 
q' q q2 

which thus satisfy pIq - q2P = +1 and p' q - qlp = -1, we define the interval 
J(p, q) of so-called "mediants" by 

J( ) ((p +p')n (p +p')n) 

It is clear that the intervals J(p, q) form a partition that is not too different 
from our Farey covering. 

Lemma 4. An interval I(p, q) can only meet its two next neighbors I(p , q') 
and I(p2, q'). Moreover, the interval J(p, q) is included in I(p, q), and the 
length of I(p, q) is less than twice the length of J(p, q). 

We omit the easy proof of this lemma, which can be found in [1]. 
So the Farey covering is almost a partition in the following [precise] sense: 

Definition 2. Let 1 be an integer. A covering 3' = {YjIj E J} of Z(n) is said 
to be an 1-partition if, for all x of Z(n), the number of elements Yi that 
contain x is at most 1. 

So we have proved that the Farey covering made of the I(p, q)'s is actually 
a 2-partition and also a quasi-partition-with "quasi" being used in accordance 
with the principles of ? 1.2. 

2.3. Formalizing the Balance Phenomenon. We first need to extend our defini- 
tion of uniformity to coverings, in order to formalize the Balance Phenomenon. 

Definition 3. Let 1 = (1l, 12) be a pair of two strictly positive constants. Two 
subsets X and Y of Z(n) are 1-independent (with respect to P, the uniform 
probability measure over Z(n)) if 

P(Xl nY) 

A pair made of a subset X of Z(n) and a covering ( = {Yjij E J} of Z(n) 
is 1-independent if, for all j of J, the sets X and Yi are 1-independent. 
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We consider now, as in ?1.2, a family of pairs (X, Y) obtained when the 
index n varies. We will say that this family is quasi-independent if one can 
find an I = (l1, 12) that does not depend on n for which all the pairs (X, 3') 
are i-independent. For short, any pair (X, ') of this family will be said to 
be quasi-independent. Alternatively, we shall say that the distribution of X is 
quasi-uniform with respect to the covering Y{. 

The first result in this section formalizes a version of the Balance Phe- 
nomenon: Up to absolute multiplicative constants, each subset B n I(p, q) 
contains as many elements as if the distribution of B were actually uniform. 

Theorem 4. The pair made with subset B and the Farey covering of order k = 

(1 /4)n'1/3 is quasi-independent. 

2.4. Obtaining the Uniformity Condition when a is near 2/3. In a subset 
X that has a quasi-uniform distribution with respect to a quasi-partition V, 
we can work locally and we propose to construct quasi-uniform drawings from 
X n Yj . This can help in obtaining a quasi-uniform drawing from X, and this 
principle will be used now for getting the uniformity condition when a is near 
2/3. 

So we will work in each subset B n I(p, q). There, we will prove a weak 
version of the Pattern Occurrence (Lemma 6) and use the exhibited pattern 
to construct locally quasi-uniform drawings that we will assemble together to 
obtain the Two-Thirds Algorithm, which provides the Uniformity Condition 
when a is near 2/3. 

First we give an informal description of this algorithm: Imagine that points 
of B are balls that are contained in a chest of drawers. Each drawer represents 
a Farey interval. 

(1) The balls are not necessarily all distinct. Perhaps, there are two in- 
carnations of the same ball in two distinct drawers [according to the 
2-partition]. 

(2) The number of balls in each drawer is almost proportional to the size 
of the drawer [according to the Balance Phenomenon]. 

(3) In each drawer, the balls are collected in numbered boxes. The first two 
boxes are perhaps empty, but one knows exactly the number of balls 
that they contain. The other ones contain a number of balls that almost 
follows a law depending on the numbering of the box [according to the 
Pattern Occurrence]. 

It is clear that one can choose "easily" a ball in this chest of drawers in an 
"almost" uniform way. This is expressed in the following result: 

Theorem 5. There exists a polynomial-time algorithm, called the Two-Thirds 
Algorithm, which draws elements from B in a quasi-uniform way. 

This last theorem, together with our general Theorem 2, gives the main result 
of the paper. 



834 BRIGITTE VALLEE 

Theorem 6. There exists an integer factoring probabilistic algorithm, associated 
with the a-Dixon method with a = 2/3, whose time-complexity exponent is 
equal to N/-473. 
2.5. Using lattices for a local study of the subset B. We now introduce our 
main local tool, lattices. 

Inside each of the intervals I(p, q), some simple facts of geometry of num- 
bers can explain and prove our observations about gaps between successive el- 
ements of B. We make a local use of lattices of Z2 and, thus, the elements of 
B near a point xo give rise to points of a lattice L(xo) between two parabo- 
las. Furthermore, if xo E I(p, q) is sufficiently close to the rational number 
pn/(2q), this lattice has a geometry which is "compatible" with the geometry 
of the parabolas, and we can easily describe, in an algorithmic way, the points 
of the lattice between the two parabolas and count them. We now will develop 
these arguments. 

We consider the lattice L(xo) which is generated by the two vectors ( 1, 2xo) 
and (0, n), and the elements of B near point xo give rise to points of L(xo) 
between two parabolas. If x = xo + u is an element of Z(n), we have 

Q()X2+ 2XoU +U2 [n]. Q(x) xO--xuu 
Thus, if we let w = Q(x) - u - x02, we have the equivalence between the two 
conditions: 

(i) x = xo + u belongs to B, 
(ii) there exists w such that the point m(x) = (u, w) belongs to L(xO) 

and lies between the two parabolas with respective equations 

w+u 2+x2=h and w+u 2+x2=-h. 

If now xo is the integer nearest to the rational pn/(2q) with a small denom- 
inator q, 

x0 - p n= uo with IuOI < 

we introduce the domain P(p, q) formed with the points m(x) of L(xo) aris- 
ing from the points x of B n I (p, q). In other words, for two integers p and 
q satisfying IPI < q < k, and (p, q) = 1, we propose to describe the domain 
of lattice points 

P(p, q) = {(u, w) E L(xO) I Iu + uol < h/2q and w+u2+xol < h}. 

There exists a primitive vector of L(xO) which makes this task easy. The vector 

r = q(l, 2xo) - p(O, n) = (q, 2quo) 

has a slope equal to 2uo, which is in absolute value at most 1, and has a 
horizontal component equal to q. If I(p', q') is a Farey interval adjacent to 
xo we can use the vector 

s = q'(1, 2xo) - p'(0 ,n) = (q' 2q'uo + n/q) 
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to complete r' into a basis of L(xo). Finally, we have shown the following 
result: 

Lemma 5. The points of the lattice L(xo) lie on quasi-horizontal lines which cut 
on the vertical axis segments of length equal to n/q; moreover, on each line, the 
points of L(xo) have horizontal gaps equal to q. From one line to the next, 
the points of L(xo) are shifted with a horizontal spacing equal to q' in absolute 
value. 

3. GENERATING RANDOM ELEMENTS OF B IN A QUASI-UNIFORM WAY 

Now, our main tools-Farey covering, lattices, parabola-are defined. We 
are going to use them to explain our experimental observations. In this section, 
we are interested in the random generation of B, and we will, in particular, 
establish Theorems 4 and 5. 

3.1. The boxes of the drawer. We now explain how to define the boxes of the 
drawer I(p, q) that we mentioned in our informal description of the Two- 
Thirds Algorithm in ?2.4. 

We consider the lines of the lattice, parallel to the vector r', which intersect 
the domain P(p, q) associated with I(p, q). The two extremal positions of 
these lines are easy to determine (Figure 2). 

The first one is the tangent to the parabola of equation w = -U - XO + h, 
with a slope equal to 2uo. This line satisfies the equation 

w - (-u2-x 2+h) = 2uo(u+uO). 

The second joins the two limit points of P(p, q) whose respective coordi- 
nates are 

(-- + _ u - 2 h-Xo 

and 

_-uO h (u + 2h 
- h - X02 

This line has actually a slope equal to 2uo and satisfies the equation 

w+ (u +h )+h+xo =2u (u+u0+2h). 

These two lines intersect the vertical axis at the respective points 

2 2 2 2 h_ 2_ w0 =h-X +u and w =-h-X0+u_ 4q2u 

so that all the lines parallel to r' that intersect P(p, q) are the ones that intersect 
2 2 the segment [wo, w1] whose length is equal to 2h +h /4q 
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One numbers these lines from top to bottom; a real v is called an index if 
there exists a line of L(xo) parallel to r which intersects the vertical axis at the 
point with ordinate equal to wo - v'n/q; this quasi-horizontal line is denoted 
by D(v); and, if x is a point of B n I(p, q), we call index of x the index v 
of the line D(v) which contains the point m(x). 

We use two particular lines, parallel to r', which cut the vertical axis at 
w = - 4h and w = w- h /4q2 in order to divide P(p, q) into three 
domains: the chest, the legs, and the feet (Figure 2). So, we define our boxes: 

The first two boxes are the chest and the feet, while the other ones are all the 
lines D(v) of the legs. 

Then, we define four particular indices: vo is the first index of the domain, 
", is the first index of the legs, v2 is the last index of the legs, and v3 is the last 
index of the domain. The index v, is defined to be the least index greater than 
or equal to 4hq/n, while the index v2 is the greatest index less than h /4qn . 
Since the total height of P(p, q) is equal to w - w= h2/4q + 2h, the index 

2 
V3 is the greatest index less than h /4qn + 2hq/n. 

F~~~~~~~ 

\~~~~~ D (v+ ) 

FIGURE 2 FIGURE 3 

The three parts of P(p, q) The segments T(LJ) 
C: the chest, L: the legs, F: the feet 



SMALL MODULAR SQUARES AND INTEGER FACTORING ALGORITHMS 837 

Note that Figure 2 is not to scale: Our choice of h makes the legs very 
long, while the chest and the feet are very small and each contains at most four 
indices. Observe the relations: 0 < vo < 1 and 

h2 h2 hk h 
(7) V2+ 1 > > 4k = 16 = 16 n> 16hq > 4(v - 1). 

3.2. Estimate of the number of balls in each box; a weak version of the Pattern 
Occurrence. We show that the number N(v) of points of P(p, q) on each line 
D(v) of the legs follows the approximate law 

(8) N(h) z 2 
h 

More precisely, we show the following. 

Lemma 6. The number N(v) of points of P(p, q) on line D(v) of the legs 
satisfies 

h < N(v) < 7 h 

Proof. In the legs, we consider the two segments T-(v) and T+(v) cut on 
the line D(v) by the two parabolas. Their horizontal projections are the two 
segments S7(v) and S+(v), 

S7(v) = [-b(v) - uo, -a(v) - uo], S+(v) = [a(v) - uo, b(v) - uo], 

with a(v) = vn/q - 2h and b(v) = v/li7-i7. Each of them has a length s(v) 
equal to (cf. Figure 3) 

s(vo) = b(v)- a(v) = - 1 hq 

A series expansion is legitimate in the legs because we have there v > 4hq/n; 
we use the fact that, for all x < 1/2, 

2< 1 < 2 + 4 < ) 
2~ivi2[i~4~1fxJ] -42- 

and obtain 

h , < s(v) < ?h, . 

Furthermore, on each of these segments, the lattice L(xo) has points with a 
horizontal spacing equal to q, and since we have 

(9) 5( )- > 
h 

>2 forallv<v2, 

it is clear that each segment T(v) contains at least two points of L(xo) . More 
precisely, we can evaluate the number N(v) of lattice points on the union of 
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the two segments of T(v): 

N(v)?>2(jL-1) > h 

(10) Vq vn 

N(v) < 2 [ j +1]< 7 h 

Thus, up to absolute multiplicative constants, N(v) follows the claimed law. 0 

3.3. The number of points in P(p, q); proof of Theorem 4 and the Balance 
Phenomenon. In order to prove Theorem 4, we are going to evaluate the above 
number N in comparison with the number 

h 2h 2h 2 
N - x - = e q n qn 

that we should expect if the distribution of B were exactly uniform. 
In order to calculate the number N, of points in the legs, we use quasi-law 

(10) and comparisons with integrals: 

4 dflv 1 

and with the relations (7), and the quasi-law (10), we get 

(12) 2 ( 4 ) Ne-<l< 4(1+ 16) &ew 

In the chest and in the feet, one obtains also upper bounds in a straightfor- 
ward manner, but no nontrivial lower bounds. 

There are at most four lines in the chest, and, on each line, the number of 
points is less than (2/q)(v1 - 1)n/q + 1 < 4VTi/q + 1 < 0251Ne . Thus, the 
number Nc of points in the chest satisfies Nc < 1*~004Ne . 

There are at most two lines in the feet, and on each line, the number of points 
is less than 8. Thus, the number Nf of points in the feet satisfies Nf < 16 < 
0.1 25Ne I 

Finally, we obtain 

sNe?< N < 4Ne. 
So the pair B and the Farey covering of order k - (1 /4)n113 are 1-independent. 
More precisely, one can take l1 = 1/5 and 12 = 4. This provides an explicit 
proof of Theorem 4. 

3.4. The Two-Thirds Algorithm. We can give now a more formal description 
of this algorithm and prove its properties. 

Input. A random point x of Z(n) . 
Output. A point z of B which lies in the same Farey interval as x. 
(1) Choice of the Farey interval-the drawer. Randomly choose an x in 

Z(n), and, with the last two best approximations of 2x/n with denominators 
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less than k, which are called p1/q1 and p2/q2, determine a Farey interval 
I(p, q) which contains x: 

Consider the mediant p3/q3 of the rationals p1/q1 and P2/q2, 
defined by the relations: p3 = P1 + P2 and q3 = q1 + q2 
It belongs to the segment [p"l/ql , p2/q2]. If 2x/n belongs 
to [pl/q1, p3/q3], then choose (p, q) = (pi, q,), else choose 
(p, q) = (P2' q2) 

Then determine the domain P(p, q) relative to this Farey interval, its four 
main indices V I'0 V2 v3 defined in ?3.1, as well as the point xo nearest to 
the rational pn/(2q). 

(2) Evaluation of the number of points in the Farey interval. Determine the 
points of L(xo) inside the domain P(p, q). [For this, we operate in a different 
way in the chest or in the feet, as in the legs.] [In the chest and in the feet, we do 
not have lower bounds for the number of points, but we can perform an exact 
calculation, because the number of lines is at most four in each case. In the 
legs, we use the quasi-law (8) of N(v) and approximate N(v) by 2h/l/ri7-n.] 

(2a) First, determine exactly the points in the chest and the feet, and exactly 
calculate their numbers, which are denoted NC and Nf. 

(2b) Then, with the help of an integral, evaluate the number N, of the points 
in the legs. Let N = NC + N, + Nf be the total number of lattice points 
inside P(p, q). 

(3) Choice of the line-the box. Randomly choose an integer t in [1, N]. 

(3a) If t < NC + Nf, determine the point y of the chest or the feet which 
corresponds to this number. The abscissa u of this point gives the 
output z = x0 + u. 

(3b) If not, from the number t - (Nc + Nf, first determine the index v of 
the line D(v): Use the estimate (8) and the comparison between the 
series with general term 1/'/i; and an integral. Then, calculate exactly 
the number of lattice points on this line, and randomly choose a lattice 
point y on this line. The abscissa u of this point gives the output 
z = x0 + u. 

3.5. Properties of the Two-Thirds Algorithm. The polynomial-time complex- 
ity of this algorithm is clear. Furthermore, we see that it uses only O(logn) 
arithmetic operations on numbers of order n. 

The constants of quasi-uniformity arise in our algorithm from each of the 
three steps and make precise the informal description that we gave in ?2.4. 

(1) There are some x's that belong to two Farey intervals, and others that 
belong to only one such interval. We choose I(p, q) in the first step if and only 
if 2x/n lies inside J(p, q). According to Lemma 4, this interval J(p, q) has 
length proportional to I(p, q) up to absolute multiplicative constants. So we 
can choose the I(p, q)'s quasi-proportionally to their length. 
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(2) Use Theorem 4 (Balance Phenomenon). 
(3) Use Lemma 6 (weak version of the Pattern Occurrence). 
This completes the proof of Theorem 5. From this, we deduce finally The- 

orem 6, which provides the best rigorously established probabilistic complexity 
bound for integer factorization algorithms. 

4. MORE ABOUT THE PATTERN OCCURRENCE 

So far, we have been interested in the random generation of elements of B. 
Now we adopt a more deterministic point of view. We propose to describe the 
gaps around a given element of B in order to explain the Pattern Occurrence 
and determine in polynomial-time the two closest neighbors in B of a point of 
Z(n) . 

We still use lattices and consider the local transfer of points of B n I(p, q) 
into P(p, q) . This transfer is compatible with the topology of these two subsets: 
two neighbors in B n I(p, q) lead to two sufficiently close points of P(p, q). 

In ?3, we used transfer from B n I(p, q) to P(p, q), but we stayed in 
P(p, q). Now, we come back to B n I(p, q) by using horizontal projections. 
Using this double transfer, we, most of all, obtain two results: the first (Theorem 
7) gives a theoretical description of gaps around a point of B, while the second 
(Theorem 8) is an algorithm, called the Neighbors Algorithm, which "often" 
finds the two neighbors in B of a given point. 

4.1. An informal explanation of the main arguments. Our study is based on 
some remarks that we state first in an informal way. 

Comparison between two notions of neighborhood. We define two notions of 
neighborhood: Two points of B n I(p, q) are B-neighbors if no point of B lies 
between them. Two points of P(p, q) are P-neighbors if they belong to the 
same segment T(v) and, if, on this segment, no point of P(p, q) lies between 
them. 

The comparison between the two notions of neighborhood depends on the 
denominator q of the Farey interval I(p, q), and we must distinguish two 
cases, according to the sign of the quantity t = 1 - 2hq/n = 1 - 2q/k. If t 
is negative, the segments S(v) are disjoint and the order on B n I(p, q) is 
compatible with the natural order on P(p, q). Otherwise, if t is positive, the 
segments S(v) overlap each other, and there is a mixing between the horizontal 
projections S(v) of successive segments of T(v) (cf. Figures 4 and 5). 

Low degree of overlapping. The degree of overlapping is never too large, so 
that we can consider only a small number of lines to determine the B-neighbors 
of a point. This is ultimately the reason why we obtain a polynomial-time 
algorithm. 

Regularity around ordinary points. Our method works for points of Z(n) 
that are only moderately well approximated by rationals pn/(2q). Such points 
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b (v-2) b(v 1) 

b(v-1) 

a (v--2 | a-)b(v) a(v-1) b (v) 

a(v) b(v+1) a(v) 

a(v+1) 
b(v+2) b(V+1) 

a(v 2) a(v+1) 

FIGURE 4 FIGURE 5 
Case when q > k/2 Case when q < k/2 

are called ordinary and give rise to points of P(p, q) which lie neither too high 
in the chest, nor too low in the feet. Around such a point, the pattern of the 
domain P(p, q) is sufficiently clear to easily determine the P-neighbors of this 
point. 

4.2. Gaps around ordinary points. We first formalize the notion of an ordinary 
point. 

Definition 4. A point xi of I(p, q) is called ordinary if its distance ul from 
pn/(2q) satisfies the following inequalities: 

(13) 2<ul< 3hn 

The subset of these points is denoted by O(p, q). 

The following lemma gives an estimate of the density of this ordinary subset 
and makes precise the indices of ordinary points (indices are to be taken in the 
sense of 3.1). 

Lemma 7. The index of an ordinary point satisfies the inequality 2 < v < v2 - 1, 
and the ordinary subset has a density greater than 5/8. 

Theorem 7 below takes advantage of the three remarks that we previously 
stated. 

Theorem 7. Let x1 be a point of B n O(p, q) at a distance u1 from pn/(2q), 
and let p'/q' be the best approximation of p/q with a denominator q' < q. 
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We set t = 1 - 2hq/n. Then the following hold: 

(1) There exists a point x2 of B at a distance exactly equal to q from x1 . 
(2) If q > k/2, the two gaps around x1 belong to the set 

G={gl? <g<q, g=aq'[q] withaeZand lal <2}. 

(3) If q < k/2, at least one of the two gaps around x1 is exactly equal to 
q. The other one satisfies 

l tn 2 tn/ 1n < g < 2 tn + 2q and g =- ?q[q]. 

We now prove these results: we begin by proving Lemma 7, then each part 
of Theorem 7. We use the notations of ??2.5 and 3.2, and we shall assume 
throughout the proof, without loss of generality, that xi is greater than pn/2q. 
So, the point m(xl) belongs to the positive part T+(v) of a segment T(v). 
We consider successive segments T(v) of the legs and the positive parts S+ (v) 
of their horizontal projections: 

[a(v) - uo, b(v) - uo] 

with 
vn n vn 

a(v)= --2h= (v+t-1)- and b(v)- -. 

q q q 
We wish to compare the position of these abscissae for successive values of v. 
It is clear that this comparison depends on the sign of t, where t is always less 
than 1 in absolute value. 

4.3. Properties of ordinary points. Proof of Lemma 7. The first inequality for 
the index v, namely v > 2, is clear. As to the assertion v < v2 - 1, we obtain 
by equations (7) and (13) 

h2 2_ 

16g [4g 4]g<(< - 3)g < a(v/ 1)2 

so that the index v of xi is less than v2 - 1. 
We now derive an upper bound for the cardinality of the complementary 

subset, which we call exceptional and denote by E. We have 

jEj< E2 +Z(1 
3 

gh 

where the sums are taken over the integers (p, q) satisfying the two conditions 
pjI < q < k and (p, q) = 1 . The first sum is at most nV1/6, while the second 
is at most n(1 - v'3/2), and finally an upper bound for JEI is 3n/8. 

4.4. Part of Theorem 7. Part 1. Consider the index v of an ordinary point 

xi . By Lemma 7, the point m(xl) associated with xl by means of our usual 
transfer belongs to a segment T+ (v) that lies in the legs or in the lowest part 



SMALL MODULAR SQUARES AND INTEGER FACTORING ALGORITHMS 843 

of the chest. If the segment lies in the legs, the length s(v) of its horizontal 
projection is greater than 2q by relation (9) and it surely contains at least two 
points of the lattice. If it lies in the chest, our hypothesis says that it cannot be 
too high in this chest, so that it is sufficiently long and also contains two points 
of the lattice. 

4.5. Proof of Theorem 7. Case when q > k/2. If t is negative (i.e., q > k/2 
and -1 <t <0), the horizontal projections S+ (i) of the segments T+ (v) are 
not disjoint (cf. Figure 4). We must determine how they overlap each other. We 
consider an ordinary point xi of B n I(p, q) with an index equal to v . Thus, 
the two quantities b(v + 1) - b(v) and a(v) - a(v - 1) measure the degree of 
this overlapping around this point xl , and we get a lower bound for them. 

On the right of T(v), we obtain 

b(v+l)-b(v)= /(v+l) -- v> n 
q q-2q b(v?+1)' 

and we deduce from Lemma 7 that 

b(v + 1) - b(v) > > k > q. 
2 v2q 

Thus, there is a point of L(xo) which lies in T(v + 1), to the right of m(xl), 
such that the gap between xi and its right neighbor is at most q. 

On the left of T(v), we use a lower bound for a(v) - a(v - 1). Since the 
sequence of the s(v) is decreasing, we obtain 

a(v) - a(v - 1) = b(v) - b(v - 1) + s(v - 1) - s(v) > q, 

so that there is a point of L(xo) which lies in T(v - 1) and to the left of 
m(x1). We conclude that the gap between xl and its left neighbor is at most 
q. 

Finally, the two gaps around an ordinary point are at most q. 
We remark also that, since t > -1, the abscissa a(v + 3) is greater than 

b(v + 1 ), so that the two segments S((v) and S((v + 3) are at a distance greater 
than q. So, if the point m(x,) belongs to a line D(v), a point m(x) associated 
with a next neighbor x of xi can only belong to the five lines D (v +a), with a 
an integer at most 2 in absolute value. According to Lemma 5, the horizontal 
shift between points of L(xo) n D(v) and those of L(xo) n D (v + 1) is equal 
to q' in absolute value. This proves Part 2 of Theorem 7. 
4.6. Proof of Theorem 7. Case when q < k/2. If t is positive (i.e., q < k/2 
and 0 < t < 1), the segments S(v) are disjoint (cf. Figure 5). So the natural 
order on I (p, q) is induced by the natural order on P(p, q) . Thus, in this case, 
since the point m(x,) has at least one P-neighbor m(x) in the segment T(v) 
at a distance exactly equal to q, the two points xl and x are B-neighbors, 
with a spacing equal to q between them. 

The same fact may hold true for the other B-neighbor x' of xl , if the point 
m(x1) has another P-neighbor in the segment T(v). But, we must consider 
also the case when m(x,) is at the end of the segment T(v). 



844 BRIGITTE VALLEE 

First consider the case when m(x,) is the last point on the right of T(v). 
Thus, the gap between xl and its right neighbor is at most a(v + 1) - b(v) + 2q 
and at least a(v + 1) - b(v). We get estimates for a(v + 1) - b(v): 

a(v + 1) - b(v) = b(v) [ + - 1] 

and 
7tn 1 < a(n + 1) - b(v) < 1n 1 

since the index v of the ordinary point xi is at least 2. Now, if m(xl) is the 
last point of L(xo) on the right of T(v), we have 

b(v) - q < u, < b(v). 

But, by hypothesis, we also have from (13) 

2 2n 4n 8 2 12 (14) u > 2 > =4h = 2k 2 2q , so that ul > 32q, q - k 

and 
b(v) < (ul + q) < eu, . 

We deduce that 

(15) tn < a(v + 1) - b(v) < tn 
3qu1 a(v+)-b()? t 

In the same vein, if m(x1) is the last point on the left of T(v), the gap 
between xl and its left neighbor is at most a(v) - b(v - 1) + 2q and at least 
a(v) - b(v - 1). We get estimates for a(v) - b(v - 1): 

tn 1 Stn 1 
-- a( ) < a(v) -b(v- 1) < ?-- 2q -a(v) .8q a(v)~ 

since the index v of the ordinary point xi is greater than 2. Now, if m(x1) 
is the last point of L(xo) on the left of T(v), we have 

a(v) < ul < a(v) + q 

and, by (14), 
8a(V) > 85(ul - q) > 3u,., 

We deduce that 

(16) 2tn < a(v) - b(v - 1) < 2tn 
2qui ~~3quj 

Finally, comparing relations (15) and (16) that summarize the two cases, 
we obtain the announced bound. We use the horizontal shift of Lemma 5 to 
complete the proof of Part 3 of Theorem 7, and also the proof of the whole 
theorem. 
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4.7. A precise description of the pattern of B near an ordinary point. The right 
half O+(p, q) of the ordinary part O(p, q) of the Farey interval I(p, q) may 
be written as the disjoint union of segments 

1(j) = [2g + b(vo + i + 1) , 2q + b(vo + i + 2) 

where the integer j varies from 1 to v2 - VO (The indices v0 and v2 are 
defined in ?3.1.) 

We use these intervals to define the pattern that we observed in ?2.1. More 
precisely, we can easily describe gaps between successive elements of B n H1(j): 
they form what we call the jth pattern of B inside O+(p, q). The jth pattern 
has length 7r(j) which follows the approximate law 

1 ni 

2 (vo + j + 1)q' 

If q < k/2, the jth pattern begins by a first gap g-a big one-, approximately 
equal to 

g t7r(j); 

then, there is a sequence of gaps, all equal to q . The number N1 (j) of terms 
of this sequence is approximately equal to N(vo + j + 1)/2, where N denotes 
the function defined in ?3.2. We have 

N, (j) ( l t) 7r(j). 
q 

If q > k/2, the jth pattern is divided between two subpatterns separated by 
gaps: 

- a first subpattern which is a sequence of N2(j) gaps all equal to q, 
- then a gap g, 
- after this, a sequence of N3(j) pairs of gaps (q', q - q 

- and finally another gap g . 

The two numbers N2(j) and N3(j) are approximately equal to 

N2(J)7 (1- jtj) (i and N3(j) 
7 U) 2U ;-_( -lt)q q 

Note that the gaps g and g' may depend on the integer j, but they must 
belong to the set G defined in Theorem 7, possibly associated with an a equal 
to 2 in absolute value. 

We have thus obtained an approximate description, where all the approxima- 
tions are given up to strictly positive absolute multiplicative constants. Here, 
"absolute" means independent of the index v , of the pair (p, q), and the mod- 
ulus n. We provide a quasi(!)-description of the Pattern Occurrence, and we 
can verify that it explains well our experimental facts of ?2.1. 
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4.8. The Neighbors Algorithm. As before, we consider an ordinary point xi 
of O(p, q), at a distance ul from pn/(2q). For an easier description of the 
algorithm, and without loss of generality, we shall suppose that xi is greater 
than pn/(2q). 

But, here, point xi need not belong to B, and we now explain how to 
find the two B-neighbors of the point xi . We gather the results of previous 
subsections, and we obtain a description of the Neighbors Algorithm. This is a 
polynomial-time algorithm that succeeds on the ordinary subset. 

Input. A random point xl of Z(n). 
Output. The two neighbors xl and xl of xl in B. 
(1) With the last best approximation of 2xj1n with denominator less than 

k, denoted by p/q, determine the Farey interval I(p, q) which contains xi 
and the integer x0 nearest to the rational pn/(2q). 

Calculate the distance ul of xi to pn/(2q) and check whether xi is ordi- 
nary. If not, the algorithm fails. 

(2) Determine the index v such that u1 E [b(v), b(v + 1)) . 
If q < k/2, there are only three possibilities for the index ,u of the next 

B-neighbors of xl: it can only belong to the set M = {v, v + 1, v + 2}. 
If q > k/2, there are only five possibilities for the index ,u of the next B- 

neighbors of xl: it can only belong to the set M = {v - 1, v, v + 1, v + 2, 
v + 3}. 

(3) On each line D(,u) to be considered, determine the abscissae u (,u) and 
u+(,u) of two points of P(p, q) nearest to the line of equation u + u0 = ul 
and finally the two next B-neighbors xl and xl of xl by the relations 

xl =x0+Max{u(4u)1u E M} and x =x0 +Min{u+(Cu)tu E M}. 

The analysis of the complexity of this algorithm is clear and gives the follow- 
ing result. 

Theorem 8. The Neighbors Algorithm is a polynomial-time algorithm which finds 
the two next B-neighbors of an ordinary point or fails. The subset where the 
algorithm succeeds has a density larger than 5/8. 

5. DISCUSSIONS AND CONCLUSION 

We place here our method and our results in the context of previously known 
results, both within classical number theory and computational number theory. 

5.1. Discussion of the choice a = 2/3. A natural question to ask is: Why does 
our method work well for a near 2/3 ? Can it be generalized for other values 
of the parameter a greater than a ? 

It is clear that the transfer of the problem to the lattice L(xo) works for 
all values of the parameter a: we use the auxiliary parameters h = 4n' and 
k = (1/4)n a, and we define the domain P(p, q). The quasi-uniform law of 
N(v) in the legs remains true and the computations in the legs and in the feet 
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can be started in the same way. However, one cannot generalize our method 
in a straightforward way for values of the parameter a smaller than 2/3: in 
these cases, the legs may be very short, and the chest very big! First, relation 
(7) no longer holds true, so that the lower bound (10) in the legs is no longer 
valid. Second, the behavior of the number of points in the chest may have large 
variations and can no longer be compared with the expected number Ne. 

During the study of the set B(a), the area of the chest which is of order 
n3a/2 has to be compared with the determinant n of our lattice L(xo). This 
is why the value 2/3 of the parameter a is a natural one. When a < 2/3, 
one cannot predict the number of points of L(xo) in the chest. This is all the 
more true since all the lattices that we use are irregular [8]: they have a shortest 
vector that is very short, i.e., much shorter than n112. We thus see that a = 2/3 
is optimal for this class of methods. 

5.2. Using the Two-Thirds Algorithm. Using our algorithm, we have at our dis- 
posal a range of algorithms depending on the optimizations we elect to adopt 
in the D[a] algorithm for a = 2/3 (in Step 2 for matrix formation, and Step 
3 for elimination). We only discussed the best possible bound of Lv'3, but it 
may be of interest to observe that a bound of LX'_, which was the previously 
known complexity record, is easily obtained by using Pollard-Strassen's factor- 
ization in Step 2. Some of the time-bound exponents associated with various 
optimizations are summarized below (compare with the corresponding table in 
[5]). 

Basic V/STh= 1.632 
Pollard-Strassen X = 1.414 
Early Abort V/73= 1.527 
Pomerance [5] f/3T = 1.290 
Pomerance [6] /3 = 1.154 

Also, on the practical side, we can transform the Two-Thirds Algorithm into 
a heuristic algorithm of B(a) with a < 2/3: it is sufficient to always choose in 
Step 3 the point of L(xo) nearest to the middle of segment S(v) . In this way, 
we abandon a rigorously established quasi-uniformity property, but we expect 
a gain in obtaining quadratic residues smaller than n213 whose square roots 
still retain some sort of randomness, since they are spread over the whole of 
the interval Z(n) . This approach contrasts with the particular set of quadratic 
residues obtained by the continued fraction algorithm [4]. 

5.3. Coming back to the estimate of the cardinality of B. Note that Theorem 4 
also gives an evaluation of the global cardinality of B. Since the Farey covering 
is a 2-partition, we deduce from ?3.3 that 

2 jB nI(p, q)l < IBj < E B nI(p, q)l, 
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where the sum is taken over the integers (p, q) satisfying the two conditions 
jpj < q < k and (p, q) = 1; from this, we obtain 

1 <Bj < 4 
WF 2h -ih 

These bounds are of course less sharp than the bounds of Theorem 3, but they 
do not involve any arithmetic property of the modulus n, while the proof of 
Theorem 3 is principally based on the prime decomposition of the modulus. 
Furthermore, our results of ?2 are locally stronger, since the Polya-Vinogradov 
inequality cannot give any local estimate. Note also that the local distribution 
of B is largely independent from arithmetic properties of the modulus n. 

So, in the particular case when a = 2/3, we have developed a geometric 
method which gives an alternative result about the cardinality of B. Our result 
is weaker from the global point of view, but much stronger from the local point 
of view. 

5.4. An explanation of experimental facts. Our study of the subset B was 
motivated to a large extent, at least in the beginning, by the links that it has 
with the D[a] method. But the results of our numerical experiments were 
so curious that we guessed much more structure in this subset than we could 
hope for. We could actually explain these structural properties with simple 
tools-Farey intervals, lattices-that are well adapted to this problem. So, the 
subset B is interesting in itself, and also as a good example of Mathematics of 
Computation! 
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